Wang, Jiyong

Fellow - Laboratory Genetics and Genomics

Wang, Jiyong

After receiving his Ph.D. degree from China Agricultural University in Beijing, China, Dr. Wang joined Columbia University in New York City as a postdoctoral
fellow, where he studied the field of epigenetics. By transitioning to work in the clinical laboratories, he was attracted to the diagnosis of genetic
disorders by utilizing the cytogenetic and molecular methods. He specialized in developing new approaches and testing and interpreting the data for
clinical diagnostics of human diseases by leveraging next-generation sequencing and conventional Sanger sequencing analyses, as well as other molecular
methodologies. In 2020, he continued to pursue his career goal in clinical genetic medicine through the Laboratory Genetics and Genomics fellowship
at GGC. Currently, he is training in interpreting the diagnostic results of both cytogenetic and molecular tests, as well as developing novel tests
for clinical use.

Contact Information

Office: (864)-388-1816

jwang@ggc.org

Education

  • B.S., Bioengineering, Dalian University of Technology, Dalian, Liaoning, China, 2006
  • Ph.D., Microbiology, China Agricultural University, Beijing, China, 2011
  • Fellow, Laboratory Genetics and Genomics, Greenwood Genetic Center, 2020-present
 

Selected Publications

  • Zhurinsky, J., Salas-Pino, S., Iglesias-Romero, A., Torres-Mendez, A., Knapp, B., Flor-Parra, I., Wang, J., Bao, K., Jia, S., Chang,
    F., Daga, R. (2019) Effects of the Microtubule Nucleator Mto1 on Chromosomal Movement, DNA Repair, and Sister Chromatid Cohesion in Fission Yeast.
    Mol Biol Cell. 30(21):2695-2708
  • Zhang, Y. #, Shan, C.#, Wang, J.#, Bao K.#, Tong, L.*, and Jia, S.* (2017). Molecular basis for the role of oncogenic histone mutations
    in modulating H3K36 methylation. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation. Sci Rep. 2017 Mar
    3;7:43906. (# co-first author).
  • Wang, J., Cohen, A.L., Letian, A., Tadeo, X., Moresco, J.J., Liu, J., Yates, J.R., Qiao, F., and Jia, S. (2016). The proper connection
    between shelterin components regulates telomeric heterochromatin assembly. Genes Dev. 30,827-839.
  • Wang, J., and Jia, S. New insights into the regulation of heterochromatin. (2016).Trends in Genetics. 32, 284-294.
  • Shan, C.#, Wang, J.#, Xu K.#, Chen, H., Andrews, S., Moresco, J. J., Yates, J. R., Nagy, P. L., Tong, L.*, and Jia, S.* (2016). Histone
    H3K9M mutation traps a H3K9 methyltransferase to block heterochromatin spreading. eLife 5:e17903. (# co-first author).
  • Wang, J., Reddy, B.D., and Jia, S. (2015). Rapid epigenetic adaptation to uncontrolled heterochromatin spreading. eLife 4, 1–17.
  • Wang, J., Tadeo, X., Hou, H., Andrews, S., Moresco, J.J., Yates, J.R., Nagy, P.L., and Jia, S. (2014a). Tls1 regulates splicing of
    shelterin components to control telomeric heterochromatin assembly and telomere length. Nucleic Acids Res. 1–14.
  • Wang, J., Lawry, S.T., Cohen, A.L., and Jia, S. (2014b). Chromosome boundary elements and regulation of heterochromatin spreading.
    Cell. Mol. Life Sci. 71, 4841-4852.
  • Wang, J., Tadeo, X., Hou, H., Tu, P.G., Thompson, J., Yates, J.R., and Jia, S. (2013). Epe1 recruits BET family bromodomain protein
    Bdf2 to establish heterochromatin boundaries. Genes Dev. 27, 1886–1902.
  • Tadeo, X., Wang, J., Kallgren, S.P., Liu, J., Reddy, B.D., Qiao, F., and Jia, S. (2013). Elimination of shelterin components bypasses
    RNAi for pericentric heterochromatin assembly. Genes Dev. 27, 2489–2499.
  • Hou, H., Zhou, Z., Wang, Y., Wang, J., Kallgren, S.P., Kurchuk, T., Miller, E. a, Chang, F., and Jia, S. (2012). Csi1 links centromeres
    to the nuclear envelope for centromere clustering. J. Cell Biol. 199, 735–744.
  • Wang, J., Hu, Q., Chen, H., Zhou, Z., Li, W., Wang, Y., Li S., and He Q. (2010). Role of Individual Subunits of the Neurospora crassa
    CSN Complex in Regulation of Deneddylation and Stability of Cullin Proteins. PLoS Genet 6 (12) e1001232.
  • Xu, H., Wang, J., Hu, Q., Quan, Y., Chen, H., Cao, Y., Li, C., Wang, Y., and He, Q. (2010). DCAF26, an adaptor protein of Cul4-based
    E3, is essential for DNA methylation in Neurospora crassa. PLoS Genet 6 (11) ,e1001132.
  • Zhao, Y., Shen, Y., Yang, S., Wang, J., Hu, Q., Wang, Y., and He, Q. (2010). Ubiquitin ligase components Cullin4 and DDB1 are essential
    for DNA methylation in Neurospora crassa. J Biol Chem 285, 4355-4365.
 

 

Meet Ella

We will remember February 26th for the rest of our lives. On that day, we received the call from the Greenwood Genetic Center that they had discovered our daughter, Ella Marie, has Kleefstra syndrome. Very early on, my wife, Kelly, observed Ella being delayed in some of her milestones. Kelly monitored Ella’s progression and sought out testing in an effort to get Ella some assistance. Along the way, we were sent to GGC and met with LEARN MORE

In The News