Genetic Research


Research on genetic disorders is essential to diagnose, understand and treat these conditions. The focus of GGC’s Division of Research is human disabilities, including birth defects, autism, intellectual disability and metabolic disorders. Our goal is to better define the causes of these disabilities and to develop strategies for treatment and prevention. GGC’s Research Division is working closely with Diagnostic and Clinical Divisions as well as the Clemson Center for Human Genetics towards these goals. Supported by both private and public grants, the Division also maintains a strong program in basic science research that continues to uncover new information about genetic disorders. Our active collaborations with pharmaceutical companies are fueling the development and testing of new therapies.
 
GGC’s Research Division is lead by Dr. Richard Steet (Director of Research and Head of the JC Self Research Institute) who is joined by faculty members, Dr. Heather Flanagan-Steet (Director of Functional Studies) and Dr. Luigi Boccuto (Assistant Research Scientist). The Research Division is also home to several senior scholars, including our former Director, Dr. Charles Schwartz. For more information about our ongoing work, please visit the research projects pages (under construction) for our faculty members:

  • Richard Steet, Ph.D. (Director of Research) - pathogenesis of lysosomal storage disorders and CDGs, chemical glycobiology tools to identify sensitive glycoproteins, modifiers of disease progression in CDGs, development and evaluation of novel therapies for lysosomal storage disorders
  • Heather Flanagan-Steet, Ph.D. (Director of Functional Studies) – zebrafish models for lysosomal storage disorders and CDGs, role of extracellular cathepsin proteases and altered cell signaling during pathogenic tissue development, functional evaluation of variants of uncertain significance
  • Luigi Boccuto, M.D. (Assistant Research Scientist) – metabolic profiling of autism, novel therapeutic approaches for autism, Phelan-McDermid syndrome

Research Areas at GGC

We are currently pursuing a broad range of research projects related to genetic disorders. These projects, driven by our faculty members and their research teams, focus on defining disease mechanisms using cell- and animal-based systems, elucidating the metabolic underpinnings of autism, developing new technologies for the diagnosis of genetic disorders and functionally characterizing genetic variants.

Our current areas of focus are listed below. Follow the links (under construction) to learn about these areas of research and how GGC scientists are working together to improve the quality of life for patients with genetic diseases.

At the Greenwood Genetic Center, we utilize cutting-edge technologies along with cell- and animal-based model systems to assist clinicians in helping both the patient and their families better understand the cause of the disorder and unraveling the complex pathogenesis of genetic diseases. The Research Division is home to the state-of-the-art Hazel and Bill Allin Aquaculture Facility that houses more than ten thousand zebrafish being used to model and study genetic disorders. This versatile vertebrate animal system (the first model organism at GGC) is also being leveraged to investigate whether specific variants in the genome are disease causing. The Research Division is equipped with powerful instrumentation for imaging, metabolic profiling, cell biology and biochemistry that allows us to stay at the forefront of research on genetic disorders. This instrumentation is outlined below: 

Olympus FV1300 Confocal Microscope: This laser-scanning microscope combines high-resolution optical imaging with variable depth selection to image cells and tissues to allow the visualization of structures in these samples that would not be possible with traditional microscopy techniques. 
OmniLog Plate Reader: This high-throughput colorimetric reader is used for metabolic profiling of cells and provides an unbiased assessment of the metabolic state of the cell and how it utilizes different sources to generate energy.
Seahorse XF Analyzer: This instrument measures oxygen consumption and extracellular acidification rates in live cells in a multi-well plate, allowing investigation of cellular functions such as glycolysis and mitochondrial respiration.
CytoFlex Cell Scanner: A cell scanner that detects antigens on the surface of cells and determines their abundance; used to determine the expression of different proteins in sorted cell populations. 
BioTek CytationTM Cell Imaging Platform: This cell imaging plate reader combines automated digital microscopy with multi-mode microplate capability to allow phenotypic analysis of cells and quantitative data to be obtained from a single experiment.
Port-a-Patch® set up: This instrument is used for patch clamp experiments and enables simplified access to cellular electrophysiology measurements on cells in suspension by the use of a planar glass surface with a micron diameter hole.

The GGC Research Division is actively engaged in numerous collaborations with academic laboratories and pharmaceutical companies to accelerate our understanding of genetic disorders and the development of treatments. 

Birth Defects Prevention Program

Learn more about GGC’s ongoing efforts to prevent birth defects in babies through the use of folic acid during pregnancy here.

 

One Mother's Story

One Mother's Story

After a long three-year struggle trying to have children, our son, Charlie, was born on April 18, 2009. He was our miracle...perfect in every way! When Charlie was five days old, our pediatrician called to notify us that one of the numbers from the heel prick test was a bit high. We headed to the hospital that afternoon for more tests. I will never forget the following day. It was cool and crisp - not a cloud in the sky....

In The News